Eur J Nutr. 2013 Feb;52(1):107-16. doi: 10.1007/s00394-011-0292-2. Epub 2011 Dec 28.
Phytochemical composition of "mountain tea" from Sideritis clandestina subsp. clandestina and evaluation of its behavioral and oxidant/antioxidant effects on adult mice.
Vasilopoulou CG, Kontogianni VG, Linardaki ZI, Iatrou G, Lamari FN, Nerantzaki AA, Gerothanassis IP, Tzakos AG, Margarity M.

PURPOSE:
The goals of this study were to monitor the effect of drinking of herbal tea from Sideritis clandestina subsp. clandestina for 6 weeks on behavioral and oxidant/antioxidant parameters of adult male mice and also to evaluate its phytochemical composition.

METHODS:
The phytochemical profile of the Sideritis tea was determined by liquid chromatography-UV diode array coupled to ion-trap mass spectrometry with electrospray ionization interface. The effects of two doses of the herbal infusion (2 and 4% w/v, daily) intake on anxiety-like state in mice were studied by the assessment of their thigmotactic behavior. The oxidant/antioxidant status of brain (-Ce), liver and heart of adult male Balb-c mice following the consumption of Sideritis tea was also evaluated via the measurement of malondialdehyde (MDA) and reduced glutathione (GSH) levels using fluorometric assays. Our study was further extended to determine the antioxidant effects of the herbal tea on specific brain regions (cerebral cortex, cerebellum and midbrain).

RESULTS:
The identified compounds were classified into several natural product classes: quinic acid derivatives, iridoids, phenylethanol glycosides and flavonoids. Our results showed that only the 4% Sideritis tea exhibited anxiolytic-like properties as evidenced by statistically significant (p < 0.05) decrease in the thigmotaxis time and increase in the number of entries to the central zone in comparison with the control group. Consumption of both tea doses (2 and 4% w/v) elevated GSH (12 and 28%, respectively, p < 0.05) and decreased MDA (16 and 29%, p < 0.05) levels in brain (-Ce), while liver and heart remained unaffected. In regard to the effect of herbal tea drinking (2 and 4% w/v) on specific brain regions, it caused a significant increase in GSH of cerebellum (13 and 36%, respectively, p < 0.05) and midbrain (17 and 36%, p < 0.05). Similarly, MDA levels were decreased in cerebellum (45 and 79%, respectively, p < 0.05) and midbrain (50 and 63%, respectively, p < 0.05), whereas cerebral cortex remained unaffected.

CONCLUSIONS:
Mountain tea drinking prevents anxiety-related behaviors and confers antioxidant protection to rodent's tissues in a region-specific, dose-dependent manner, and its phytochemical constituents are shown for the first time.